Генетика законы наследования биология

Законы Менделя. Основы генетики

Грегор Мендель - австрийский ботаник, изучивший и описавший закономерность наследования признаков. Законы Менделя - это основа генетики, по сей день играющие важную роль в изучении влияния наследственности и передачи наследственных признаков.

В своих экспериментах ученый скрещивал различные виды гороха, отличающиеся по одному альтернативному признаку: оттенок цветов, гладкие-морщинистые горошины, высота стебля. Кроме того, отличительной особенностью опытов Менделя стало использование так называемых чистых линий, т.е. потомства, получившегося от самоопыления родительского растения. Законы Менделя, формулировка и краткое описание будут рассмотрены ниже.

Многие годы изучая и скрупулезно подготавливая эксперимент с горохом: специальными мешочками ограждая цветки от внешнего опыления, австрийский ученый достиг невероятных на тот момент результатов. Тщательный и длительный анализ полученных данных позволил вывести исследователю законы наследственности, которые позже получили название Законы Менделя.

Прежде чем приступить к описанию законов, следует ввести несколько понятий, необходимых для понимания данного текста:

Доминантный ген - ген, признак которого проявлен в организме. Обозначается заглавной буквой: A, B. При скрещивании такой признак считается условно более сильным, т.е. он всегда проявится в случае, если второе родительское растение будет иметь условно менее слабые признаки. Что и доказывают законы Менделя.

Рецессивный ген - ген в фенотипе не проявлен, хотя присутствует в генотипе. Обозначается прописной буквой a,b.

Гетерозиготный - гибрид, в чьем генотипе (наборе генов) есть и доминантный, и рецессивный ген некоторого признака. (Aa или Bb)

Гомозиготный - гибрид, обладающий исключительно доминантными или только рецессивными генами, отвечающими за некий признак. (AA или bb)

Ниже будут рассмотрены Законы Менделя, кратко сформулированные.

Первый закон Менделя, также известный, как закон единообразия гибридов, можно сформулировать следующим образом: первое поколение гибридов, получившихся от скрещивания чистых линий отцовских и материнских растений, не имеет фенотипических (т.е. внешних) различий по изучаемому признаку. Иными словами, все дочерние растения имеют одинаковый оттенок цветков, высоту стебля, гладкость или шероховатость горошин. Более того, проявленный признак фенотипически в точности соответствует исходному признаку одного из родителей.

Второй закон Менделя или закон расщепления гласит: потомство от гетерозиготных гибридов первого поколения при самоопылении или родственном скрещивании имеет как рецессивные, так и доминантные признаки. Причем расщепление происходит по следующему принципу: 75 - растения с доминантным признаком, остальные 25 - с рецессивным. Проще говоря, если родительские растения имели красные цветки (доминантный признак) и желтые цветки (рецессивный признак), то дочерние растения на 3/4 будут иметь красные цветки, а остальные - желтые.

Третий и последний закон Менделя, который еще называют закон независимого наследования признаков, в общих чертах означает следующее: при скрещивании гомозиготных растений, обладающих 2 и более разными признаками (то есть, например, высокое растение с красными цветками(AABB) и низкое растение с желтыми цветками(aabb), изучаемые признаки (высота стебля и оттенок цветков) наследуются независимо. Иными словами, результатом скрещивания могут стать высокие растения с желтыми цветками (Aabb) или низкие с красными(aaBb).

Законы Менделя, открытые еще в середине 19 века, много позже получили признание. На их основе была построена вся современная генетика, а вслед за ней - селекция. Кроме того, законы Менделя являются подтверждением великого разнообразия существующих ныне видов.

Оcновы генетики. Законы наследственности

Генетика наука, изучающая закономерности наследственности и изменчивости. Мендель, проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридо-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками, анализ исследованных признаков у гибридов без учета остальных, количественный учет гибридов.

Проводя моногибриднре скрещивание (скрещивание по одной паре альтернативных призкаков), Мендель установил закон единообразия первого поколения. Он гласит: при скрещивании двух гомозиготных организмов, отличающихся по одной паре альтернэтивных признаков, первое поколение гибридов единообразно как по фенотипу, так и по генотипу. Этот закон так же называют законом доминирования, т. к. один из признаков проявляется, а другой - подавлен.

Если потомков первого локоления скрестить между собой, то во втором поколении исчезнувший в первом поколении признак проявляется вновь. Это явление получило название второго закона Менделя или закона расщепления. Он гласит: при скрещивании гибридов первого поколения между собой, во втором поколении наблюдается расщепление доминантных и рецессивных признаков в соотношении 3 :1. Генотипы второго поколения - АА, Аа, Аа, аа, то есть наблюдается соотношение 1:2:1.

Расщепление признаков в потомстве прискрещивании гетерозиготных особей обьясняется тем, что гаметы генетически чисты, несут только один ген из аллельной пары. При образовании половых клеток в каждую гамету попадает только один ген из аллельной пары (закон чистоты гамет).

Цитологической основой расщепления признаков при моногибридном скрещивании является расхождение гомологичных хромосом к разным полюсам клетки и образование гаплоидных половых клеток в мейозе.

Генотип - совокупность генов организма, взаимодействующих между собой.

Фенотип - совокупность внешних признаков организма.

В опытах Мендель использовал разные способы скрещивания: моногибридное, дигибридное и полигибридное. При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования.

Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3 :1 по каждой паре признаков.

Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции, так как является источником комбинативной наследственности.

Организм любого вида имеет большое разнообразие признаков, которое обеспвг чивается тысячами генов. В то же время число хромосом невелико, так у человека их всего 23 пары. Следовательно, в каждой хромосоме располагаются сотни и тысячи генов. Наследование признаков, гены которых находятся в одной хромосоме, исследовал американский генетик Т. Морган. Гены, расположенные в одной хромосоме, называют группой сцепления. Количество групп сцепления в клетке равно гаплоидному набору хромосом.

Закон сцепленного наследования, открытый Морганом, гласит: гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Дальнейшие исследования Моргана показали, что сцепление не всегда бывает абсолютным. Причина тому кроссинговер (обмен участками между гомологичными хромосомами), который происходит в профазе первого деления мейоза. Кроссинговер нарушает группы сцепления генов и ведет к появлению особей с перекомбинацией признаков.

Частота кроссинговера зависит от расстояния между генами: чем ближе располагаются гены в хромосоме, тем меньше вероятность кроссинговера между ними и наоборот. Эта зависимость используется, для составления генетических карт хромосом, где по вероятности кроссинговера рассчитывается положение генов, в хромосоме.

Расстояние между генами определяется по формуле:

где X расстояние между генами (в морга-нидах), А и С - количество кроссовертных особей, N - общее число особей.

Биология для студентов

Здравствуйте читатели моего проекта Биология для студентов! Подготовка к экзаменам, зачетам и госэкзаменам, а также рефераты и презентации занимают много времени, если готовится по учебникам. Есть три способа подготовки к экзамену: по учебнику, по лекциям и поиск в интернете. Готовиться по учебнику очень долго. Что касается лекций, не у всех есть хорошие лекции, так как не все преподаватели их нормально читают, и кроме того не все успевают их записывать. И остается третий вариант искать ответы на вопросы в интернете. Не для кого не секрет, что в настоящее время большинство студентов предпочитают именно этот вариант.

За пять лет учебы на факультете биотехнологии и биологии подготовка к сессии у меня занимала много времени. В Рунете не так много биологических сайтов. Конспекты по экономике, истории, социологии, политологии, математике найти очень просто. А ответы на вопросы по ботанике, зоологии, генетики, биофизике, биохимии гораздо сложнее. Наверное, потому что биология не самая распространенная специальность. К тому же биологические предметы не являются общеобразовательными в отличие, например, от экономики и истории, которые изучаются практически на любых специальностях. В Рунете я не нашел ни одного сайта на которым был бы представлен необходимый контент для подготовки к экзаменам, зачетам и госэкзаменам по биологическим дисциплинам. И я решил создать его.

Данный проект еще очень молод (доменное имя я зарегистрировал в конце октября 2018 года) и к тому же у меня не так много времени на его развитие. Поэтому он развивается не очень быстро. В настоящее время здесь представлены конспекты не по всем предметам (я регулярно добавляю новые материалы на сайт) и в скором времени вы увидите не только гораздо больше конспектов и рефератов, но также и другие интересные материалы. Я буду улучшать и развивать этот проект. Если у вас есть какие-то предложения как можно улучшить данный сайт, напишите мне, оставив сообщение в контактную форму.

Также я хотел бы вас попросить рассказать об этом сайте своим однокурсникам, друзьям и знакомым, которые являются студентами биологических специальностей. Это поможет развитию данного проекта.

Помимо конспектов к экзаменов на нашем сайте вы можете скачать рефераты, презентации, курсовики и даже дипломные работы по биологическим предметам совершенно бесплатно. Однако пока наша база не большая. В перспективе мы регулярно ее пополняем и планируем сделать большую базу рефератов, презентаций, курсовых и дипломных работ по всем биологическим предметам. Вы можете помочь нам ускорить данный процесс прислав свои рефераты на наш email адрес: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. или в нашу группу вконтакте.

Если вы не найдете на данном сайте реферата, который вам нужен вы можете его заказать.

Основные законы наследования и наследственности

Мы обращали внимание на то, что наследственность и наследование два разных явления, которые не все строго различают.

Наследственность есть процесс материальной и функциональной дискретной преемственности между поколениями клеток и организмов. В основе ее лежит точная репродукция наследственно значимых структур.

Наследование процесс передачи наследственно детерминированных признаков и свойств организма и клетки в процессе размножения. Изучение наследования позволяет раскрывать сущность наследственности. Поэтому следует строго разделять указанные два явления.

Рассмотренные нами закономерности расщепления и независимого комбинирования относятся, к изучению наследования, а не наследственности. Неверно, когда «закон расщепления» и «закон независимого комбинирования признаков-генов» трактуются как законы наследственности. Открытые Менделем законы являются законами наследования.

Во времена Менделя считали, что при скрещивании родительские признаки наследуются в потомстве слитно («слитная наследственность») или мозаично одни признаки наследуются от матери, другие от отца («смешанная наследственность»). В основе таких представлений лежало убеждение, что в потомстве наследственность родителей смешивается, сливается, растворяется. Такое представление было ошибочным. Оно не давало возможности научно аргументировать теорию естественного отбора, и на самом деле, если бы при скрещивании наследственные приспособительные признаки в потомстве не сохранялись, а «растворялись», то естественный отбор работал бы вхолостую. Чтобы освободить свою теорию естественного отбора от подобных затруднений, Дарвин выдвинул теорию наследственного определения признака отдельными единицами теорию пангенеза. Однако она не дала правильного решения вопроса.

Успех Менделя обусловлен открытием метода генетического анализа отдельных пар наследственных признаков, Мендель разработал метод дискретного анализа наследования признаков и по существу создал научные основы генетики, открыв следующие явления:

  1. каждый наследственный признак определяется отдельным наследственным фактором, задатком, в современном представлении эти задатки соответствуют генам: «один ген один признак», «один ген один фермент»,
  2. гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен,
  3. оба пола в равной мере участвуют в передаче своих наследственных свойств потомству,
  4. редупликация равного числа генов и их редукция в мужских и женских половых клетках, это положение явилось генетическим предвидением существования мейоза,
  5. наследственные задатки являются парными, один материнский, другой отцовский, один из них может быть доминантным, другой рецессивным, это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

Таким образом, Мендель, открыв метод генетического анализа наследования отдельных пар признаков (а не совокупности признаков) и установив законы наследования, впервые постулировал и экспериментально доказал принцип дискретной (генной) детерминации наследственных признаков.

На основании изложенного нам представляется полезным различать законы, непосредственно сформулированные Менделем и относящиеся к процессу наследования, и принципы наследственности, вытекающие из работы Менделя.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

Первый закон закон дискретной (генной) наследственной детерминации признаков, он лежит в основе теории гена.

Второй закон закон относительного постоянства наследственной единицы гена.

Третий закон закон аллельного состояния гена (доминантность и рецессивность).

Именно эти законы представляют собой главный итог работ Менделя, так как именно они отражают сущность наследственности.

Менделевские законы наследования и законы наследственности являются основным содержанием генетики. Их открытие дало современному естествознанию единицу измерения жизненных процессов ген и тем самым создало возможности объединения естественных наук биологии, физики, химии и математики с целью Анализа биологических процессов.

В дальнейшем при определении наследственной единицы мы будем употреблять только термин «ген». Понятия «наследственный фактор» и «наследственный задаток» громоздки, и, кроме того, вероятно, наступило время, когда наследственный фактор и ген следует различать и вложить в каждое из этих понятий свое содержание. Под понятием «ген» мы пока будем иметь в виду далее неделимую функционально целостную единицу наследственности, определяющую наследственный признак. Термин «наследственный фактор» следует толковать в более широком смысле как комплекс ряда генов и цитоплазматических влияний на наследственный признак.

Поделитесь ссылкой с друзьями

Зооинженерный факультет МСХА. Неофициальный сайт

Максимова Н.П. Генетика. Курс лекций. Часть 1 (Законы наследственности) - файл . 1.doc

Доступные файлы (10):

    Смотрите также:
  • Максимова Н.П. Генетика. Курс лекций. Часть 2 (Хромосомная теория наследственности) (Документ)
  • Шпаргалка - Основы генетики. Законы наследственности (Шпаргалка)
  • Контрольная работа - Молекулярная генетика подход к эволюции (Лабораторная работа)
  • Лобашев М.Е. и др. Генетика с основами селекции (Документ)
  • Шпаргалки - Генетика (Шпаргалка)
  • Максимова Н.П. Молекулярная генетика (Документ)
  • Мочалов И.В. Выращивание оптических кристаллов. Конспект лекций. Часть 1 (Документ)
  • Гуляев Г.В. Генетика (Документ)
  • Ахундова Э.М. Лекции по генетике. Полный курс (Документ)
  • Гуляев Г.В. Генетика (Документ)
  • Курс слайд-лекций по Физической химии (Документ)
  • Медик В.А., Юрьев В.К. Курс лекций по Общественному здоровью и здравоохранению. Часть 1 Общественное здоровье (Документ)

1. ПРЕДМЕТ, ОБЪЕКТЫ И МЕТОДЫ ГЕНЕТИКИ.

ИСТОРИЯ РАЗВИТИЯ НАУКИ

Мутационный метод используется для направленной индукции мутаций с целью, как указывалось выше, создания различий между родителями при гибридологическом анализе, а также в биохимической генетике для выяснения функции гена.

Цитологический метод используется для изучения строения генетического аппарата клетки, поведения хромосом в процессе деления (митоза и мейоза), при слиянии гамет, а также для идентификации хромосомных и геномных мутаций.

Кроме того, в генетический анализ входит математический метод, который позволяет проводить математический и статистический анализ результатов скрещивания. Популяционный метод позволяет изучать генетические процессы, происходящие на уровне популяций.

Большой вклад в развитие и совершенствование генетического анализа внес метод гибридизации соматических клеток in vitro. По сравнению с классическим гибридологическим анализом преимуществом этого метода является то, что он позволил начать эффективное картирование генов человека, устранил барьер нескрещиваемости некоторых организмов, а также значительно сократил время проведения анализа.

ис. 1. Теория пангенезиса в сравнении с теорией

Э. Чермак приступил к опытам по гибридизации растений гороха в 1898 г. и практически сразу обнаружил закономерности, описанные ранее Г. Менделем.

С поразительной быстротой открытия Г. Де Фриза, К. Корренса и Э. Чермака были подхвачены другими учеными, положив начало бурному развитию генетических исследований. Это показывает, что для понимания открытия Г. Менделя решающей была общая подготовленность биологов. В этом плане нельзя не упомянуть работы известного английского ученого У. Бэтсона (18611926), который высказал ряд пророческих мыслей о необходимости изучения поведения отдельных признаков и статистического учета всех появляющихся в потомстве типов. Подобные мысли высказывал и Г. Де Фриз, а также английский ученый К. Пирсон, который разработал статистические методы для биологии, положив начало развитию биометрии.

В 1953 г. Дж. Уотсон и Ф. Крик показали, что молекула ДНК имеет форму двойной спирали, а также сформулировали принцип комплементарности отдельных цепей в молекуле. Именно комплементарность была положена в основу объяснения механизма репликации ДНК в последующем. В 1958 г. Ф. Крик сформулировал «центральную догму молекулярной биологии», согласно которой передача наследственной информации идет только в одном направлении, а именно от ДНК к РНК и от РНК к белку.

Генетика законы наследования биология

Контрольные работы, курсовые, дипломные, рефераты, а также подготовка докладов, чертежей, лабораторных работ, презентаций и еще много всего. Недорого и быстро.

Вы находитесь на сайте Xenoid v2.0:

быстро, качественно и недорого помогаем решать

задачи по химии. Возможны консультации онлайн. См. раздел Решение задач.

Copyright 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки

Понравилась статья? Поделить с друзьями: